Appendix A-3

Nonstandard Features Justification Forms

VIADUCT ALTERNATIVE

Continuation - Non-Standard Feature Justification, Viaduct Alternative, Curve \#1

1. Non-Standard Horizontal Stopping Sight Distance (HSSD) condition applies to the inside travel lane only as sight distance is controlled by the concrete bridge barrier that is located at edge of proposed shoulder (See Figure 1).
2. Proposed minimum HSSD of 438 feet (inner lane) is based on providing a widened 12 ' shoulder on the inside of the curve for the length of the curve. If a standard 4 foot shoulder were provided, the minimum HSSD would be 379 feet.
3. Rate reported is accidents per million vehicle miles (acc/mvm) for linear highway segments. The Statewide Accident Rate is from the published Average Accident Rates for State Highways By Facility Type (Based on accident data August 1, 2012 to July 31, 2014), based on an Urban, Divided 4 lane highway.
4. For more detailed accident report information, refer to Table 2 (copy attached) included in the Technical Memorandum titled I-81 Viaduct Project - Syracuse, New York, Non-Standard and Non-Conforming Features Evaluation, S-Curve and Slalom Area, dated September 5, 2014.
5. The cost estimate is based on one potential approach to fully meet the standard for HSSD, which is providing additional widening of the inner side shoulder width from 12 ft to 25 ft along the length of the curve. (See note 7 for another potential approach). While widening the inside shoulder an additional 13 feet would satisfy the HSSD criteria for this curve, there are other concerns that this would introduce. Additional concerns include; potentially encouraging unauthorized use of the wider shoulder as a travel lane, snow removal and de-icing logistics during winter weather and increased long term maintenance costs. The estimated cost to over-widen the shoulder of this curve is $\$ 10.1 \mathrm{M}$, but this curve is just one of five curves within the interchange area that would need to be widened to meet HSSD criteria. The total cost to over-widen the shoulder of all five curves is estimated to be \$26.0 M.
6. The design criterion for the left shoulder along this segment of I-81 is 4 feet. If a 4 foot wide left shoulder were provided, the resultant HSSD would be 379 feet (inner lane). By increasing the left shoulder width to 12 feet, the resultant HSSD increases to 438 feet, which is a significant improvement over the existing HSSD and represents an improvement to 77%, of the Design Criteria standard.
7. A second potential approach to fully meeting the HSSD for this curve (see note 5) would be to provide a flatter horizontal curve. By increasing the radius of the proposed curve from the current design of 1330 ft to 2260 ft ., HSSD for this curve would meet design criteria. However, because of the complex geometry through the main I-81/I-690 Interchange, it is not possible to modify the alignment of the curve without modifying the geometry of I-81 southbound, I-690 westbound, I-690 eastbound and many of the interconnect ramps. This level of modification would essentially mimic alternative option V-2, which would result in approximately twelve (12) additional building impacts, nine (9) of which are on or eligible for listing on the National Register of Historic Places. The additional ROW impact costs that would be associated with fully meeting the HSSD criteria are estimated to be $\$ 20.0 \mathrm{M}$. In addition, several of these building could also present additional social and economic impacts as well as unique relocation challenges. For example:
a. Nettleton Commons is a large building having both commercial and residential uses. As this building contains approximately 60 apartments and several businesses, acquisition of the building would impact a large number of residents and businesses in the core downtown area.
b. Samaritan Center is located in the former St. John the Evangelist church and currently serves approximately 300 meals a day to those in need as part of their breakfast and dinner service. Acquisition of this building could cause a disruption to these critical services and negatively impact those that depend on this critical service. In addition, prior to their opening at this location, they had encountered overwhelming neighborhood opposition at another proposed location, so if impacted, it is anticipated this would be a difficult and sensitive relocation.
c. The Community Reentry Center is operated by the Federal Bureau of Prisons as a halfway house for helping to transition released federal prisoners back into society. Recent attempts to relocate this facility proved to be controversial as community concerns included proximity to churches, homes, libraries and schools, so if this building is impacted by this project, it is anticipated this would present difficult and unique relocation challenges.
d. Snowden Apartments is a very large apartment building with nearly 200 apartments and 350 residents. But this building is also very unique in that nearly 80% of the residents are under the supervision of the NYS Department of Corrections and Community Service as parolees' who are registered sex offenders. If this building is impacted, it is anticipated that it would present unique and difficult relocation challenges.

Figure 1
Table 2 - Non-Standard and Non-Conforming Features Analysis and Design Improvements for Alternatives V-3 and V-4 $1=$ Existing Non-standard/Non-conforming feature is improved

ReferenceMarker	Accidents Related to PotentialNon-Standard/Non-Conforming Feature?				How Many Accidents Were Related to Each Non-Standard/Non-Conforming Feature? Design Status of Non-Standard/Non-Conforming Feature?								Existing	Standard$(60 \mathrm{mph})$	Horizontal Stopping Sight Distance (HSSD)												
						ternative V			ternative																		
	$\mathrm{N}(0)$	$Y($ es)	U(nknown)	Y/U									Shoulder		Median	$\begin{gathered} \text { Sight } \\ \text { Distance } \end{gathered}$	$\begin{aligned} & \text { Curve } \\ & \text { Radius } \end{aligned}$	Super- elevation	Grade	$\begin{gathered} \text { Accel/Decel } \\ \text { Length } \end{gathered}$	$\begin{aligned} & \text { Ramp } \\ & \text { Spacing } \end{aligned}$	Proposed		Percent of Standard	Proposed	$\begin{aligned} & \text { Increase } \\ & \text { evere } \\ & \text { Existing } \end{aligned}$	$\begin{array}{\|c} \text { Percent of } \\ \text { Standard } \end{array}$
2043	5	21	3	24	0		0	,			0	24		270	570	509	89\%	89\%	438	62\%	77\%						
2044	3	8	3	11	0		0	${ }_{4}$			0	E															
					E		1	E			E	E															
2045	5	4	3	7	0		0	7																			
2046	3	8	0	8	E		1	E																			
					E		1	E																			
Total	16	41	9	50	0	0	1	18																			

Reference Marker	Accidents Related to PotentialNon-Standard/Non-Conforming Feature?				How Many Accidents Were Related to Each Non-Standard/Non-Conforming Feature? Design Status of Non-Standard/Non-Conforming Feature?								Existing	Standard (60 mph)	Horizontal Stopping Sight Distance (HSSD)					
	$\mathrm{N}(0)$	Y(es)	U(nknown)	YIJ	Shoulder	Median	$\begin{gathered} \text { Sight } \\ \text { Distance } \end{gathered}$	Curve Radius	$\begin{gathered} \text { Super- } \\ \text { elevation } \end{gathered}$	Grade	Accel/Decel Length	$\begin{gathered} \text { Ramp } \\ \text { Spacing } \\ \hline \end{gathered}$			Proposed	$\begin{aligned} & \text { Increase } \\ & \text { over } \\ & \text { exesting } \\ & \hline \end{aligned}$	Percent of Standard	Proposed	$\begin{gathered} \text { Increase } \\ \text { over } \\ \text { oxisting } \\ \hline \end{gathered}$	$\begin{array}{\|l\|l} \text { Percent of } \\ \text { Standard } \end{array}$
2047	3	2	0	2	E		0	${ }_{\text {E }}$					270	570	533	97\%	94\%	445	65\%	78\%
2048	5	7	0	7	0		0	7		0										
					E		I	E		E										
2049	8	15	3	18	$\frac{1}{E}$		1	E	E	E		7								
Total	16	24	3	27	1	0	1	18	0											

1-690

Reference Marker	Accidents Related to Potential Non-Standard/Non-Conforming Feature?				How Many Accidents Were Related to Each Non-Standard/Non-Conforming Feature? Design Status of Non-Standard/Non-Conforming Feature?								Existing	Standard (60 mph)	Horizontal Stopping Sight Distance (HSSD)												
						ternative V			Iternative V																		
	$\mathrm{N}(\mathrm{o})$	Y(es)	U(nknown)	Y/U									Shoulder		Median	Sight Distance	Curve Radius	Superelevation	Grade	Accel/Decel Length	Ramp Spacing	Proposed	Increase over Existing	Percent of Standard	Proposed	Increase over Existing	Percent of Standard
2023	4	6	0	6				1			5			290	570	506	74\%	89\%	445	53\%	78\%						
								E			E																
2024	3	1	0	1			1	0			E																
							1	E			E																
2025	2	2	0	2	0		2	E	0																		
Total	9	9	0	9	0	0	3	1	0	0	5	0															

SEE ATTACHED CONTINUATION SHEET

Continuation - Non-Standard Feature Justification, Viaduct Alternative, Curve \#2

1. Non-Standard Horizontal Stopping Sight Distance (HSSD) condition applies to inside travel lane only as sight distance is controlled by the concrete bridge barrier that is located at edge of proposed shoulder (See Figure 1).
2. Proposed minimum HSSD of 495 feet is based on providing a widened 12 ' shoulder on the inside of the curve for the length of the curve. If a standard 10 foot shoulder were provided, the minimum HSSD would be 466 ft .
3. Rate reported is accidents per million vehicle miles (acc/mvm) for linear highway segments. The Statewide Accident Rate is from the published Average Accident Rates for State Highways By Facility Type (Based on accident data August 1, 2012 to July 31, 2014), based on an Urban, Divided 4 lane highway.
4. For more detailed accident report information, refer to Table 2 (copy attached to Exhibit A-3-1-01) included in the Technical Memorandum titled I-81 Viaduct Project - Syracuse, New York, Non-Standard and Non-Conforming Features Evaluation, S-Curve and Slalom Area, dated September 5, 2014.
5. The cost estimate is based on one potential approach to fully meet the standard for HSSD, which is providing additional widening of the inner side shoulder width from 12 ft to 18 ft along the length of the curve. (See note 7 for another potential approach). While widening the inside shoulder an additional 6 ft would satisfy the HSSD criteria for this curve, there are other concerns that this would introduce. Additional concerns include; potentially encouraging unauthorized use of the wider shoulder as a travel lane, snow removal and de-icing logistics during winter weather and increased long term maintenance costs. The estimated cost to over-widen the shoulder of this curve is $\$ 0.8 \mathrm{M}$, but this curve is just one of five curves within the interchange area that would need to be widened to meet HSSD criteria. The total cost to over-widen the shoulder of all five curves is estimated to be $\$ 26.0 \mathrm{M}$.
6. The design criterion for the right shoulder along this segment of $\mathrm{I}-81$ is 10 feet. If a 10 foot wide right shoulder were provided, the resultant HSSD would be 466 ft . By increasing the right shoulder width to 12 feet, the resultant HSSD increases to 495 feet, which is a significant improvement over the existing HSSD and represents an improvement to 87% of the Design Criteria standard.
7. A second potential approach to fully meeting the HSSD for this curve (see note 5) would be to provide a flatter horizontal curve. By increasing the radius of the proposed curve from the current design of 1693 ft to 2260 ft ., HSSD for this curve would meet design criteria. However, because of the complex geometry through the main I-81/I-690 Interchange, it is not possible to modify the alignment of the curve without modifying the geometry of I-81 southbound, I-690 westbound, I-690 eastbound and many of the interconnect ramps. This level of modification would essentially mimic alternative option V - 2 , which would result in approximately twelve (12) additional building impacts, nine (9) of which are on or eligible for listing on the National Register of Historic Places. The additional ROW impact costs that would be associated with fully meeting the HSSD criteria are estimated to be $\$ 20.0 \mathrm{M}$. In addition, several of these building could also present additional social and economic impacts as well as unique relocation challenges. For example:
a. Nettleton Commons is a large building having both commercial and residential uses. As this building contains approximately 60 apartments and several businesses, acquisition of the building would impact a large number of residents and businesses in the core downtown area.
b. The Community Reentry Center is operated by the Federal Bureau of Prisons as a halfway house for helping to transition released federal prisoners back into society. Recent attempts to relocate this facility proved to be controversial as community concerns included proximity to churches, homes, libraries and schools, so if this building is impacted by this project, it is anticipated this would present difficult and unique relocation challenges.
c. Snowden Apartments is a very large apartment building with nearly 200 apartments and 350 residents. But this building is also very unique in that nearly 80% of the residents are under the supervision of the NYS Department of Corrections and Community Service as parolees' who are registered sex offenders. If this building is impacted, it is anticipated that it would present unique and difficult relocation challenges.

SEE ATTACHED CONTINUATION SHEET

Continuation - Non-Standard Feature Justification, Viaduct Alternative, Curve \#3

1. Non-Standard Horizontal Stopping Sight Distance (HSSD) condition applies to inside travel lane only as sight distance is controlled by the concrete bridge barrier that is located at edge of proposed shoulder (See Figure 1).
2. Proposed minimum HSSD of $507 \mathrm{ft} / 509 \mathrm{ft}$ is based on providing a widened 12 ' shoulder on the inside of the curve for the length of the curve. If a standard 4 foot shoulder were provided, the minimum HSSD would be 378 feet.
3. Rate reported is accidents per million vehicle miles (acc/mvm) for linear highway segments. The Statewide Accident Rate is from the published Average Accident Rates for State Highways By Facility Type (Based on accident data August 1, 2012 to July 31, 2014), based on an Urban, Divided 4 lane highway.
4. For more detailed accident report information, refer to Table 2 (copy attached to Exhibit A-3-1-01) included in the Technical Memorandum titled I-81 Viaduct Project - Syracuse, New York, Non-Standard and Non-Conforming Features Evaluation, S-Curve and Slalom Area, dated September 5, 2014.
5. The cost estimate is based on one potential approach to fully meet the standard for HSSD, which is providing additional widening of the inner side shoulder width from 12 ft to 17 ft along the length of the curve. (See note 7 for another potential approach). While widening the inside shoulder an additional 5 feet would satisfy the HSSD criteria for this curve, there are other concerns that this would introduce. Additional concerns include; potentially encouraging unauthorized use of the wider shoulder as a travel lane, snow removal and de-icing logistics during winter weather and increased long term maintenance costs. The estimated cost to over-widen the shoulder of this curve is $\$ 2.5 \mathrm{M}$, but this curve is just one of five curves within the interchange area that would need to be widened to meet HSSD criteria. The total cost to overwiden the shoulder of all five curves is estimated to be $\$ 26.0 \mathrm{M}$.
6. The design criterion for the left shoulder along this segment of $\mathrm{I}-81$ is 4 feet. If a 4 foot wide left shoulder were provided, the resultant HSSD would be 378 feet. By increasing the left shoulder width to 12 feet, the resultant HSSD increases to $507 \mathrm{ft} / 509 \mathrm{ft}$, which is a significant improvement over the existing HSSD and represents an improvement to 89% of the Design Criteria standard.
7. A second potential approach to fully meeting the HSSD for this curve (see note 5) would be to provide a flatter horizontal curve. By increasing the radius of the proposed curve from the current design of 1788/1800 ft to 2260 ft ., HSSD for this curve would meet design criteria. However, because of the complex geometry through the main I-81/I-690 Interchange, it is not possible to modify the alignment of the curve without modifying the geometry of I-81 northbound, I-690 westbound, I-690 eastbound and many of the interconnect ramps. This level of modification would essentially mimic alternative option V-2, which would result in approximately twelve (12) additional building impacts, nine (9) of which are on or eligible for listing on the National Register of Historic Places. The additional ROW impact costs that would be associated with fully meeting the HSSD criteria are estimated to be $\$ 20.0 \mathrm{M}$. In addition, several of these building could also present additional social and economic impacts as well as unique relocation challenges. For example:
a. Nettleton Commons is a large building having both commercial and residential uses. As this building contains approximately 60 apartments and several businesses, acquisition of the building would impact a large number of residents and businesses in the core downtown area.
b. The Community Reentry Center is operated by the Federal Bureau of Prisons as a halfway house for helping to transition released federal prisoners back into society. Recent attempts to relocate this facility proved to be controversial as community concerns included proximity to churches, homes, libraries and schools, so if this building is impacted by this project, it is anticipated this would present difficult and unique relocation challenges.
c. Snowden Apartments is a very large apartment building with nearly 200 apartments and 350 residents. But this building is also very unique in that nearly 80% of the residents are under the supervision of the NYS Department of Corrections and Community Service as parolees' who are registered sex offenders. If this building is impacted, it is anticipated that it would present unique and difficult relocation challenges.

Figure 1

SEE ATTACHED CONTINUATION SHEET

Continuation - Non-Standard Feature Justification, Viaduct Alternative, Curve \#4

1. Non-Standard Horizontal Stopping Sight Distance (HSSD) condition applies to the inside "Exit Only" lane and the middle decision lane as it pertains to traffic that is exiting to the Harrison Street Exit Ramp as sight distance is controlled by the concrete bridge barrier that is located at edge of proposed shoulder. Traffic in the two southbound thru lanes, including the middle decision lane that is continuing southbound on I-81 meets HSSD criteria. (See Figure 1).
2. Proposed minimum HSSD of 443/426 feet (inner "Exit Only" lane) and the proposed minimum HSSD of 570/553 feet (middle decision lane for exiting traffic only), is based on providing a widened 12' shoulder on the inside of the curve for the length of the curve. Thru traffic in the middle decision lane that is continuing southbound on I-81 SB would meet HSSD design criteria. If a standard 10 foot shoulder were provided, the minimum HSSD would be 418/402 feet (inner "Exit Only" lane) and 560/534 feet (middle decision lane for exiting traffic only).
3. Rate reported is accidents per million vehicle miles (acc/mvm) for linear highway segments. The Statewide Accident Rate is from the published Average Accident Rates for State Highways By Facility Type (Based on accident data August 1, 2012 to July 31, 2014), based on an Urban, Divided 4 lane highway.
4. For more detailed accident report information, refer to Table 2 (copy attached to Exhibit A-3-1-01) included in the Technical Memorandum titled I-81 Viaduct Project - Syracuse, New York, Non-Standard and Non-Conforming Features Evaluation, S-Curve and Slalom Area, dated September 5, 2014.
5. The cost estimate is based on one potential approach to fully meet the standard for HSSD, which is providing additional widening of the inner side shoulder width from 12 ft to $24 \mathrm{ft} / 27 \mathrm{ft}$ along the length of the curve. (See note 7 for another potential approach). While widening the inside shoulder an additional $12 \mathrm{ft} / 15 \mathrm{ft}$ would satisfy the HSSD criteria for this curve, there are other concerns that this would introduce. Additional concerns include; potentially encouraging unauthorized use of the wider shoulder as a travel lane, snow removal and de-icing logistics during winter weather, increased long term maintenance costs and a reduced offset to one (1) building. As shown on Figure 2, over widening of the shoulder to meet HSSD would potentially increase impacts to building \#12B by reducing the offset from the building to the elevated highway from 24' to12'. The estimated cost to over-widen the shoulder of this curve is $\$ 8.6 \mathrm{M}$, but this curve is just one of five curves within the interchange area that would need to be widened to meet HSSD criteria. The total cost to over-widen the shoulder of all five curves is estimated to be \$26.0 M.
6. The design criterion for the right shoulder along this segment of I-81 is 10 feet. If a 10 foot wide left shoulder were provided, the resultant HSSD would be 402-418 feet (inner lane), 534 feet (middle lane). By increasing the right shoulder width to 12 feet, the resultant HSSD increases to 426-443 feet (inner lane), 553 feet (middle lane), which is a significant improvement over the existing HSSD and represents an improvement to 75-78\% (inner lane), 97% (middle lane) of the Design Criteria standard.
7. A second potential approach to fully meeting the HSSD for this curve (see note 5) would be to provide a flatter horizontal curve. By increasing the radius of the proposed curve from the current design of 1364/1260 ft to 2260 ft . and retaining a standard tangent length between curves 3 and 4 (see Figure 3), HSSD for through lanes of this curve would meet 60 MPH design criteria but the HSSD for a limited length of the ramp exit only lane would meet 50 MPH design criteria (see Figure 4). Use of this flatter curve would avoid direct impacts to six (6) buildings impacted by the current configuration but would require the acquisition of six (6) other buildings and substantially reduce the offset to three (3) buildings as noted below. In addition, this is one of five curves in the interchange area and the additional ROW impact costs that would be associated with fully meeting the HSSD criteria for all five curves is estimated to be $\$ 20.0 \mathrm{M}$. The follow summarizes the specific ROW impacts of realigning only this one curve.
a. Buildings $10,12 \mathrm{~A}, 13,14,31$ and 32 would no longer be directly impacted, but buildings $3,12 \mathrm{~B}, 12 \mathrm{C}, 12 \mathrm{D}$, 35 and 36 would be directly impacted by flattening the curve. As buildings 12A, 12B and 12D are on or eligible for listing on the National Register of Historic Places, the net effect of the realignment is one (1) additional eligible resource would be directly impacted.
b. While buildings $10,12 \mathrm{~A}$ and 13 would no longer be directly impacted by the flatter curve, they would still be relatively close (22', 50' and 3'), respectively to the edge of the realigned highway.
c. The offset from the highway to the building on the NW corner of Washington/Townsend would be reduced from 120' to 63'.
d. The offset from the highway to the building on the SE corner of Washington/Townsend would be reduced from 80' to 26 '.
e. The offset from the highway to the building on the NW corner of Genesee/McBride would be reduced from 60 ' to 38 '.

Figure 1

Figure 2 - Current Design

Figure 3

Figure 4 - Flatter Curve

Continuation - Non-Standard Feature Justification, Viaduct Alternative, Curve \#6

1. Non-Standard Horizontal Stopping Sight Distance (HSSD) condition applies to inside travel lane only as sight distance is controlled by the concrete bridge barrier that is located at edge of proposed shoulder (See Figure 1).
2. Proposed minimum HSSD of 509 feet is based on providing a widened 12 ' shoulder on the inside of the curve for the length of the curve. If a standard 4 foot shoulder were provided, the minimum HSSD would be 379 feet.
3. Rate reported is accidents per million vehicle miles (acc/mvm) for linear highway segments. The Statewide Accident Rate is from the published Average Accident Rates for State Highways By Facility Type (Based on accident data August 1, 2012 to July 31, 2014), based on an Urban, Divided 4 lane highway.
4. For more detailed accident report information, refer to Table 2 (copy attached to Exhibit A-3-1-01) included in the Technical Memorandum titled I-81 Viaduct Project - Syracuse, New York, Non-Standard and Non-Conforming Features Evaluation, S-Curve and Slalom Area, dated September 5, 2014.
5. The cost estimate is based on one potential approach to fully meet the standard for HSSD, which is providing additional widening of the inner side shoulder width from 12 ft to 17 ft along the length of the curve. (See note 7 for another potential approach). While widening the inside shoulder an additional 5 feet would satisfy the HSSD criteria for this curve, there are other concerns that this would introduce. Additional concerns include; potentially encouraging unauthorized use of the wider shoulder as a travel lane, snow removal and de-icing logistics during winter weather and increased long term maintenance costs. The estimated cost to over-widen the shoulder of this curve is $\$ 4.0 \mathrm{M}$, but this curve is just one of five curves within the interchange area that would need to be widened to meet HSSD criteria. The total cost to over-widen the shoulder of all five curves is estimated to be $\$ 26.0 \mathrm{M}$.
6. The design criterion for the left shoulder along this segment of $\mathrm{I}-81$ is 4 feet. If a 4 foot wide left shoulder were provided, the resultant HSSD would be 379 feet. By increasing the left shoulder width to 12 feet, the resultant HSSD increases to 509 feet, which is a significant improvement over the existing HSSD and represents an improvement to 89% of the Design Criteria standard.
7. A second potential approach to fully meeting the HSSD for this curve (see note 5) would be to provide a flatter horizontal curve. By increasing the radius of the proposed curve from the current design of 1800 ft to 2260 ft ., HSSD for this curve would meet design criteria. However, because of the complex geometry through the main I-81/I-690 Interchange, it is not possible to modify the alignment of the curve without modifying the geometry of I-690 westbound, I-81 northbound, I-81 southbound and many of the interconnect ramps. This level of modification would essentially mimic alternative option V-2, which would result in approximately twelve (12) additional building impacts, nine (9) of which are on or eligible for listing on the National Register of Historic Places. The additional ROW impact costs that would be associated with fully meeting the HSSD criteria are estimated to be $\$ 20.0 \mathrm{M}$. In addition, several of these building could also present additional social and economic impacts as well as unique relocation challenges. For example:
a. Nettleton Commons is a large building having both commercial and residential uses. As this building contains approximately 60 apartments and several businesses, acquisition of the building would impact a large number of residents and businesses in the core downtown area.
b. The Community Reentry Center is operated by the Federal Bureau of Prisons as a halfway house for helping to transition released federal prisoners back into society. Recent attempts to relocate this facility proved to be controversial as community concerns included proximity to churches, homes, libraries and schools, so if this building is impacted by this project, it is anticipated this would present difficult and unique relocation challenges.
c. Snowden Apartments is a very large apartment building with nearly 200 apartments and 350 residents. But this building is also very unique in that nearly 80% of the residents are under the supervision of the NYS Department of Corrections and Community Service as parolees' who are registered sex offenders. If this building is impacted, it is anticipated that it would present unique and difficult relocation challenges.

Figure 1

Fixed source lighting will mitigate the non-standard headlight sight distance.

5. Compatibility with Future Plans for Adjacent Segments

Proposed configuration is compatible with adjacent segments. There are no future plans to modify adjacent segments
6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF

Providing standard headlight sight distance would increase the elevations along Renwick Ave and therefore reducing the clearance underneath the NYS\&W railroad bridge and the Fineview Place bridge.

7. Recommendation

Retain existing non-standard headlight sight distance and add fixed source lighting.

NOTES:

COMMUNITY GRID ALTERNATIVE

$\xrightarrow{\circ}$

Available sight distance to the curve is slightly below the decision sight distance needed for drivers to adjust their speeds for this type of maneuver, as per AASHTO. Overhead curve warning and signal ahead signs will be placed in advance of the curve. Chevron alignments signs will be placed along the curve, as per the MUTCD.

5. Compatibility with Future Plans for Adjacent Segments

No future plans for adjacent segments of this ramp.

6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF

Providing a standard curve radii would create additional impacts to historic property and create a skewed intersection at Erie Boulevard. Traffic analysis has determined that the majority of trips on this ramp are destined for University Hill, therefore resulting in the proposed design of the ramp curve onto Irving Ave.

7. Recommendation

Propose non-standard curve radii with curve warning signs, signal ahead signs and chevron alignment signs.

NOTES:

A W7-1a (Hill with Grade) sign will be placed near the top of the non-standard grade to warn drivers in the downhill direction.

5. Compatibility with Future Plans for Adjacent Segments

Proposed configuration is compatible with adjacent segments. There are no future plans to modify adjacent segments

6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF

Providing a standard grade would raise the proposed elevations about 11' near the intersection of Van Buren St. and Almond St. This would require raising the grade of Almond Street to a max grade of 8% to meet Van Buren St. Raising elevations at this intersection would also require relocating the driveway leading to the Syracuse University Parking Garage, on the north side of Van Buren St.

7. Recommendation

Maintain existing non-standard grade of 15.52\%

NOTES:

Exhibit A-3-2-12 Nonstandard Feature Justification						
PIN:	3501.6		Route No. \& Name:		Northbound Former I-81	
Project Type:	New Construction		Design Classification:		Interstate	
ADT (2050)	31,720		Design Speed		70 MPH	
DHV (2050)	4,455		\% Trucks:		7\%	
1. Description of Nonstandard Feature						
Type of Feature (e.g., Level of Service						
Location:		Weave between Interchange 29N (NY 481) on- and off- ramps. See Note 1				Community Grid Alternative
Standard Value:		LOS D	Design Speed			70 MPH
Existing Value:		LOS C				
Proposed Value:		LOS C (2020), LOS F (2050)				
2. Accident Analysis						
Current Accident Rate:		acc/mvm or acc/mev (Note 1) $4.93 \mathrm{acc} / \mathrm{mvm}$	Statewide Accident Rate:			acc/mvm or acc/mev (Note 1) $1.09 \mathrm{acc} / \mathrm{mvm}$
Is the NSF a contributing feature to identified accidents? Choose YES or NO		YES 区				NO \square
If YES, describe how the feature contributes to accidents		During the three-year analysis period from July 1, 2010 through June 30, 2013, a total of 47 accidents occurred in this weaving segment - of which 29 accident was identified to be potentially related to the existing level of service. The number of accidents potentially related to the existing level of service equates to 62% of total accidents, and an accident rate of 3.0 acc/mvm). See Note 1.				
3. Cost Estimates						
Cost to Fully Meet Standards: Cost(s) For Incremental Improvements:			N/A			
			N/A			
4. Measures to Mitigate the Potential Adverse Effects of the NSF (e.g., curve warning signs for a non-standard horizontal curve; ITS for non-standard LOS, etc.)						
None. Level of service is within standard for build year 2020 and degrades over time. If/when the level of service becomes unacceptable, mitigation measures can be taken.						

5. Compatibility with Future Plans for Adjacent Segments

Would be compatible with future plans for adjacent segments.
6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF

Remove loop ramp from southbound S.R. 481 to northbound I-81, convert the 4 lane weaving section to a 3 lane diverge with lane one forming an exit only lane to northbound S.R 481. This would reduce the number of lane changes for vehicles exiting the interstate and remove the weaving caused by vehicles entering the interstate from southbound S.R 481. Connectivity in the area would be reduced as a consequence of removing an existing ramp.
Traffic traveling from the west to the north in the area would be diverted to Rt 31 .
Only marginal improvements in LOS would be achieved.

7. Recommendation

Given that the LOS in the PM peak hour of build year 2020 is within acceptable ranges, it is recommended to construct the interchange as proposed and pursue the mitigation measures at which time they are deemed necessary to delay the associated impacts.

NOTES:

1. This NSF justification form also applies to the BFS on NB Former I-81 between Exit 29S (former I-481 South) and Interchange 29 N (NY 481) on- ramp which operates at LOS E during the design year PM peak hour. That location is immediately downstream of, and is capacity constrained by, the weave that is the subject of the form and therefore the NSF would also be mitigated by undertaking the same measures outlined herein.
2. Use accidents per million vehicle miles (acc/mvm) for linear highway segments; use accidents per million entering vehicles ($\mathrm{acc} / \mathrm{mev}$) for intersections.

Right-in, Right-out access only will be implemented on Canal Street.

5. Compatibility with Future Plans for Adjacent Segments

No future plans for adjacent segments of this ramp
6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF

Canal Street is a dead end street that provides access to 2 properties. Severing Canal St. would require acquisition of these properties.

7. Recommendation

Provide non-standard control of access with right-in, right-out access only off of Canal Street.

Exhibit A-3-2-14 Nonstandard Feature Justification							
PIN:		3501.6			Route No. \& Name:	I-690 Eastbound Entrance Ramp at Crouse Ave.	
Project Type:		Reconstruction			Design Classification:	Interstate Ramp	
ADT (2050)		9,780			Design Speed	30 mph	
DHV (2050)		1,390			\% Trucks:	4\%	
1. Description of Nonstandard Feature							
Type of Feature (e.g., horizontal curve radius):				Control of Access			
				Erie Blvd.			Community Grid Alternative
Standard Value:				100 ft	Design Speed		30 mph
Existing Value: Proposed Value:				N/A, New Constructi			
				40 ft			
2. Accident Analysis							
Current Accident Rate:				A, New Construction	Statewide Accident Rate:		
Is the NSF a contributing feature to identified accidents? Choose YES or NO			YES \square				NO \square
If YES, describe how the feature contributes to accidents			Not applicable. New construction				
3. Cost Estimates							
Cost to Fully Meet Standards: Cost(s) For Incremental Improvements:					None		
					There are no increme	tal im	provements. This is new constru
4. Measures to Mitigate the Potential Adverse Effects of the NSF (e.g., curve warning signs for a non-standard horizontal curve ITS for non-standard LOS, etc.)							
None							
5. Compatibility with Future Plans for Adjacent Segments							
No future plans for adjacent segments of this ramp							
6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF							
There is insufficient width between Burnet Ave. and Erie Boulevard to provide the required distances to achieve Control of Access while accommodating the 2 ramps along Crouse Ave. and I-690. Closure of Erie Blvd. is not in keeping with the project objectives of enhancing connectivity.							
7. Recommendation							
Provide non-standard control of access.							

Exhibit A-3-2-17 Nonstandard Feature Justification							
PIN:		3501.6			Route No. \& Name:	Former I-81 Southbound Exit Ramp at Willow St.	
Project Type:		Reconstruction			Design Classification:	Interstate Ramp	
	ADT (2050)	10,890			Design Speed	30 mph	
	DHV (2050)	1,270			\% Trucks:	2.5\%	
1. Description of Nonstandard Feature							
Type of Feature (e.g., horizontal curve radius):				Control of Access			
				Warren St.			Community Grid Alternative
Location:				50 ft	Design Speed		30 mph
Existing Value: Proposed Value:				N/A, New Constructi			
				0 ft			
2. Accident Analysis							
Current Accident Rate:				A, New Construction	Statewide Accident Rate:		
Is the NSF a contributing feature to identified accidents? Choose YES or NO				YES \square			NO \square
If YES, describe how the feature contributes to accidents			Not applicable. New construction				
3. Cost Estimates							
Cost to Fully Meet Standards: Cost(s) For Incremental Improvements:					None		
					There are no incremental improvements. This is new construction		
4. Measures to Mitigate the Potential Adverse Effects of the NSF (e.g., curve warning signs for a non-standard horizontal curve; ITS for non-standard LOS, etc.)							
None.							
5. Compatibility with Future Plans for Adjacent Segments							
No future plans for adjacent segments of this ramp							
6. Social, Economic \& Environmental factors that weigh in the decision to retain or propose the NSF							
Elimination of the non-standard control of access would require installation of a turn-around at Warren St. to sever access to Willow St. Severing city streets is not in keeping with the project objective of enhancing connectivity.							
7. Recommendation							
Provide non-standard control of access.							

